System Energy Efficiency Lab
Home People Research Publications Sponsors Contacts
   
CitiSense
Energy Efficient Design
Reconfigurable Computing
People
Resources
Publications
Sponsors
 

CitiSense - Adaptive Services for Community-Driven Behavioral and Environmental Monitoring to Induce Change

The environmental impacts of our daily activities are largely invisible to us - Carbon dioxide from our cars, fertilizers from our lawns, environmental noise and human stress from driving - yet the impact on our long-term health is inevitable. By pervasively monitoring ourselves and our immediate environs, aggregating the data for analysis, and reflecting the results back to us quickly, we can avoid toxic locales, appreciate the consequences of our individual behaviors, and together seek a mandate for change. Today, the infrastructure of our regulatory institutions is inadequate for the cause: sensors are few, often far from where we live, and the results are slow to come to us. What about the air quality on your jogging route or commute? Can you be told when it matters most?


System Overview

With the proliferation of personal mobile computing via mobile phones and the advent of cheap, small sensors, we propose that a new kind of "citizen infrastructure", CitiSense, can be made pervasive at low cost and high value. Though challenges abound in mobile power management, data security, privacy, inference with commodity sensors, and "polite" user notification, the overriding challenge lies in the integration of the parts into a seamless yet modular whole that can make the most of each piece of the solution at every point in time through dynamic adaptation. Using existing integration methodologies would cause components to hide essential information from each other, limiting optimization possibilities. Emphasizing seamlessness and information sharing, on the other hand, would result in a monolithic solution that could not be modularly configured, adapted, maintained, or upgraded.

To address this opportunity and the ensuing challenges, UC San Diego has assembled an interdisciplinary team that includes software engineering, embedded systems, AI, security and cryptography, ubiquitous computing, and preventive medicine, as well as leveraging expertise and resources from local companies and across the UCSD campus. We propose that aspect-oriented extensions to a publish-subscribe architecture, comprising the Open Rich Services architecture (ORS), can provide a highly extensible and adaptive infrastructure. As just one example, ORS will enable highly adaptive power management that not only adapts to current device conditions, but also the nature of the data, the data's application, and the presence and status of other sensors in the area. In this way, ORS and its application to CitiSense will enable research advances in power management and the other research areas of this proposal. A CitiSense test-bed and user studies will enable in-the-world experiments and validation of the research.

For more information, see the CitiSense website.