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ABSTRACT
This paper presents an extremely lightweight dynamic volt-
age and frequency scaling technique targeted towards mod-
ern multi-tasking systems. The technique utilizes processors
runtime statistics and an online learning algorithm to esti-
mate the best suited voltage and frequency setting at any
given point in time. We implemented the proposed tech-
nique in Linux 2.6.9 running on an Intel PXA27x platform
and performed experiments in both single and multi-task
environments. Our measurements show that we can achieve
the maximum energy savings of 49% and reduce the imple-
mentation overhead by a factor of 2 when compared to state
of the art techniques.

Categories and Subject Descriptors
J.6 [Computer Applications]: Computer-Aided Engineering

General Terms
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Keywords
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1. INTRODUCTION
Power consumption is a key issue in the design of com-

puting systems today. While battery driven systems need
to meet an ever increasing demand for performance with
a longer battery life, high performance embedded systems
contend with issues of heating. Dynamic voltage and fre-
quency scaling (DVFS) is a highly effective technique for
reducing system power dissipation. The key idea behind
DVFS techniques is to dynamically scale the supply volt-
age level of the CPU so as to provide “just-enough” circuit
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speed to process the system workload, thereby, reducing the
energy consumption (which is quadratically dependent on
the supply voltage level). A number of modern processors
such as Intel’s XScale [1], AMD Athlon [2] and Transmeta’s
Crusoe [3] are equipped with the DVFS functionality.

A DVFS technique that ensures that all the tasks meet
their deadline requires critical information about all tasks,
such as the task arrival time, deadline, and workload, to be
known in advance. Such information is difficult to obtain
in a general purpose multi-tasking systems such as Linux,
Windows CE etc that are commonly used in modern embed-
ded systems. In this paper, we propose a DVFS technique
for such a general purpose multi-tasking environment. The
basic premise is to design a control algorithm that selects
among a set of voltage-frequency (v-f) settings to select the
best suited setting at any given point in time in accordance
with the task characteristics. The control algorithm bears
the responsibility for accurately characterizing the current
task’s behavior and accordingly selecting the appropriate v-
f setting. We employ an online learning algorithm [4] to
perform this control activity. The online learning algorithm
(referred to as “controller”) has a set of v-f settings (referred
to as “expert”) to choose from and selects an expert which
is most likely to minimize both the energy consumption and
performance delay based on the characteristics of the cur-
rently scheduled task and the user preference in terms of
energy-performance delay (e/p) tradeoff. The controller uti-
lizes the run time statistics made available by the platform
such as cache hit/miss ratio etc to perform this characteri-
zation. The design takes the multi-tasking environment into
account and stores the task characterization information on
a per task basis, which ensures that the updates and ex-
pert selection are made using the current task’s information
only. Such a design allows the technique to work accurately
and seamlessly across context switches. The advantage of
using an online learning algorithm for this purpose is that it
provides a theoretical guarantee on the overall performance
converging to that of the best performing expert.

We implemented the proposed technique in Linux 2.6.9
running on an Intel PXA27x platform. We experimented
with benchmarks with varying characteristics and tested for
both single task as well as multi-task scenarios. We cal-
culated actual energy savings by performing current mea-
surements in hardware. Using the technique, we achieved
energy savings of up to 49%. The technique is extremely
lightweight, and in our experiments we observed the over-
head caused by it to be around a factor of 2 less than state
of the art techniques.
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2. PREVIOUS WORK
DVFS has been an active area of research and a num-

ber of techniques have been proposed in the past. Previ-
ous DVFS-related work may be broadly divided into three
categories. The first category of techniques target systems,
where the task arrival times, workload and deadlines are
known in advance [4, 5, 6, 7]. It is assumed that the total
number of CPU cycles needed to complete each task is fixed
and known a priori. DVFS is performed at task level by the
OS in order to reduce energy consumption while meeting
hard timing constraints for each task.

The second category of techniques require either applica-
tion or compiler support for performing DVFS. In [8], the
application code is divided into blocks and the worst-case
execution time of each block is used to select voltage for the
next block. In [9], the application is divided into slots and
the voltage setting for upcoming slot is calculated with help
of a software loop. In [10], a checkpoint-based algorithm is
proposed in which the scaling points are identified off-line by
the compiler. In [11], a compiler-assisted DVFS technique is
proposed, in which frequency is lowered in memory-bound
regions of a program. In [12], a DVFS technique for multi-
media applications is proposed in which scaling is performed
at each video frame based on the timing information given
by the content provider. In [13], an intra-task scheduling
method for a multiprocessor system is proposed where tasks
are scheduled based on a predefined schedule set during the
compilation step.

The third category comprises of system level DVFS tech-
niques that make no assumptions about task characteristics
or any support from compiler. These approaches rely on
runtime statistics made available by the platform or micro-
architecture to model the task behavior. In [14] a micro
architecture-driven DVFS technique is proposed in which
cache miss drives the voltage scaling. In [15] IPC (instruc-
tion per cycle) rate of a program execution is used to direct
the voltage scaling. However, the results in these two works
are based on simulations. In [16, 17, 18], dynamic runtime
statistics such as cache hit/miss ratio and memory access
counts obtained from a performance monitoring unit (PMU)
(on an XScale platform) are used to determine the appro-
priate voltage setting. The policy in [16] uses pre-defined
optimal frequency domains in a 2-D MPC (memory requests
per cycle) and IPC space to perform scaling. Although this
technique does take multi-tasking into account, it is not
flexible in the sense that frequency domains are obtained
empirically through experiments on micro-benchmarks for
a given performance loss. It does not allow any run time
control of e/p trade-off. In [17] and [18] a regression-based
method is used to identify the degree of memory intensive-
ness of a task. The primary difference between them is that
they use different platforms for experimentation and employ
different variables for constructing the regression equation.
Scaling is performed on the basis of this information and
the user specified e/p tradeoff preference. Thus, these ap-
proaches dynamically model the workload and enable more
precise control over energy performance tradeoff using the
user preference. However, they present results only in a sin-
gle task environment. Meanwhile, the approach in [19] uses
an adaptation of the same online algorithm as we use, but
for dynamic power management (DPM).

The primary contributions of our work are as follows: (1)
We present a complete system level implementation and re-

(a) Performance (b) Energy

Figure 1: Performance Improvement and Normal-
ized Energy Consumption

sults of a DVFS policy in a multi-tasking environment. (2)
Our approach provides a mechanism to enable control over
e/p tradeoff. (3) It is based on an online algorithm which
guarantees convergence to the best suited v-f setting. (4)
The policy is extremely lightweight and has negligible over-
head.

3. TASK CHARACTERIZATION
DVFS problem is one of accurately characterizing the ex-

ecuting task, since it directly determines potential bene-
fits of performing DVFS. Weissel et al [16] show that, if
an executing task is CPU and cache intensive, the per-
formance improvement scales linearly with increasing fre-
quency. However, if a task is memory intensive, the per-
formance improvement is relatively insensitive to increase
in frequency. To verify this, we performed simple experi-
ments with 3 tasks with differing characteristics: (1) Task
burn loop, which is highly CPU intensive, continuously loops
to burn CPU cycles without accessing any memory location;
(2) Task mem, which is highly memory bound, copies data
from one memory location to another; (3) Task combo is
a mix of the first 2. We performed our experiments on an
Intel PXA27x platform, and operated the 3 tasks at 4 differ-
ent v-f settings, namely (208MHz, 1.2V), (312MHz, 1.3V),
(416MHz, 1.4V) and (520MHz, 1.5V). Figure 1a shows the
performance improvement with increasing clock speed. As
expected, burn loop has a linear performance improvement
with an increase in frequency while mem shows only a marg-
inal improvement since its execution speed is limited by
memory accesses. For combo task the improvement is about
an average of that of burn loop and mem since it has both
memory intensive and CPU intensive phases.

Figure 1b shows the energy consumption of the tasks nor-
malized against the lowest energy consumption. The energy
savings of burn loop task does not increase significantly with
decreasing clock speed. The reason for this is the high per-
formance delay of burn loop at lower frequencies (Figure 1a)
and the constant overhead of periodic kernel activities in ad-
dition to the CPU-intensive task itself, which increases with
the decreasing clock speed and hence offsets the savings due
to low voltage. However, for the mem task the gain in en-
ergy savings is significant with decreasing frequency since
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its performance delay is low even at low frequencies (Figure
1a). The energy savings for combo are a mix of the other
two. Clearly, CPU-intensive tasks do not gain much from
running at low frequencies. Conversely, it is beneficial to run
a memory bound tasks at a lower frequency. Typically tasks
comprise of CPU or memory-intensive phases, much like our
combo task. It is very difficult to identify these phases of-
fline, since one cannot accurately predict cache, TLB misses
or branch mispredictions. Hence, the problem of perform-
ing DVFS becomes one of identifying CPU-intensive and
memory-intensive phases dynamically at run time.

In order to accomplish that task we use Cycles Per In-
struction (CPI) stack measure. CPI stacks break down pro-
cessor execution time into a baseline CPI plus a number of
miss event CPI components [20]. The base CPI represents
the inherent execution component of the workload, while
the miss event CPI components reflect the lost cycle op-
portunities because of miss events such as cache and TLB
misses, branch mispredictions etc. The following equation
represents the average CPI in terms of its’ CPI stack com-
ponents:

CPIavg = CPIbase + CPIcache + CPItlb + CPIbranch + CPIstall

(1)

In order to dynamically characterize each executing task, we
construct its CPI stack at runtime by using the performance
monitoring (PMU) of the Intel PXA27x developer’s kit [1].
The PMU is an independent hardware unit with four 32-
bit performance counters that can be used to monitor any
four out of 20 unique events available simultaneously. We
monitor the number of instructions executed (INST), data
cache misses (DCACHE), cycles instruction cache could not
deliver instruction (ICACHE) and cycles processor is stalled
due to data dependency (STALL). We also get the total
number of clock cycles (CCNT) elapsed since the PMU was
started in order to calculate the CPI components:

CPIavg = CCNT/INST, CPIdcache = (DCACHE × PEN)/INST

CPIstall = STALL/INST, CPIicache = ICACHE/INST (2)

where CPIcache has been broken down into CPIicache and
CPIdcache and PEN is the average miss penalty for a data
cache miss. Note that CPItlb and CPIbranch are missing.
This is because we can monitor only 4 events at a time, and
in our experiments we found the events being monitored
more indicative of the task characteristics. Hence, we can
estimate CPIbase as follows:

CPIbase = CPIavg − CPIicache − CPIdcache − CPIstall (3)

We next define μ as a ratio of CPIbase to CPIavg (equation 4)
in order to measure the CPU-intensiveness of each executing
task. For example, the task burn loop has μ close to 1 since
it executes on the CPU most of the time, while the task
mem has much lower value of μ due to numerous memory
related stalls it causes.

μ = CPIbase/CPIavg (4)

During normal execution tasks have both CPU-intensive and
non CPU-intensive phases. As a result, we need to dynami-
cally estimate μ. A natural place to implement that is with
the OS scheduler ticks (10ms for Linux 2.6.9 we used). For
every scheduler quantum we monitor events using PMU,
construct the CPI stack and perform μ estimation using

Figure 2: System Model

Table 1: Algorithm Controller

Parameters: β ∈ [0, 1]
Initialization:
-Weight vector w1 ∈ [0, 1]N of new task

-Initialize PMU

-Evaluate µ-mapper and µ-means for all experts

For scheduler ticks t = 1, 2 . . .

1: Calculate μ
2: Update the weight vector of current task:

wt+1
i = wt

i · (1 − (1 − β) · lti)
3: Choose expert with highest probability factor in rt,

where rt = wt
∑N

i=1 wt
i

4: Apply v-f setting corresponding to operational expert to
CPU

5: Reset and restart PMU

equations 2, 3 and 4 (we use PEN=50 cycles in equation 2).
We then use μ as an input into our online learning algorithm
that then determines the appropriate voltage-frequency set-
ting for the upcoming scheduler quantum. The next section
outlines our implementation of the algorithm.

4. ONLINE LEARNING FOR DVFS
The online learning framework, as shown in Figure 2, con-

sists of three entities: controller (the core online learning al-
gorithm), experts (the v-f settings available) and the CPU.
The set of experts is collectively referred to as the “working
set”. An expert is any allowable v-f setting supported by the
platform. Each scheduler tick only one “operational expert”
is selected by the controller to determine the v-f setting while
the rest become “dormant experts”. Our controller uses an
online learning algorithm which is guaranteed to converging
to the best performing expert for any workload. The con-
vergence rate is a function of T, the number of scheduler
ticks, and N, the number of experts (O(

√
ln N/T )[21]).

Table 1 has controller’s pseudo-code. There are N experts
(v-f settings) to choose from; i = 1, 2 . . . N . The algorithm
associates and maintains a weight vector wt for the experts,
wt =< wt

1, w
t
2 . . . wt

N >. Individual per task weight fac-
tors, wt

i , reflect the suitability of their corresponding expert
for the task. At initialization we assign equal weights to
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Figure 3: Sample μ-mapper

Table 2: Loss Evaluation Methodology
Value of μ Energy Loss (ltie) Perf Loss (ltip)

μ > μ-mean 0 (μ − μ-mean)
μ < μ-mean (μ-mean −μ) 0

Total Loss (lti) = α · ltie + (1 − α) · ltip

all the experts, start up PMU and set up μ-mapper and μ-
means. Figure 3 shows a sample μ-mapper for 5 experts,
where the frequencies increase in equal steps from 0 to Ex-
pert5. The mean of each interval, μ-mean, is associated
with each respective expert, and is used for performing the
per task weight update, wt

i . In section 3 we have seen that
CPU-intensive tasks should run at a high frequency, a non
CPU intensive tasks at a low frequency, and tasks which are
a mix of the two at an intermediate frequency. Therefore we
estimate that the appropriate frequency for any fragment of
a task scales linearly with its μ.

On each scheduler tick the controller reads the values be-
ing monitored from the PMU and calculates μ using equa-
tions 2, 3 and 4 (step 1 in Table 1). On the basis of this
current value of μ, controller updates the weight vector of
the currently scheduled task (step 2 in Table 1).

In order to perform this update, the algorithm first needs
to evaluate how close an expert is to the best frequency for
the current μ. The suitability (or rather unsuitability) of
an expert for the current task is represented by a loss factor
(0 ≤ lti ≤ 1) which can be easily evaluated by comparing μ
of the task to the μ-mean of each expert. We define both
the energy loss (ltie) and the performance loss (ltip) as shown
below, and use them to calculate the overall loss (lti). If cur-
rent μ is smaller than the expert’s μ-mean, then the task is
more memory intensive with respect to the given expert and
hence can afford to run slower. It therefore has no perfor-
mance loss, but since it could have saved energy by running
slower, it has energy loss. Similarly, there is a performance
loss, but no energy loss when μ > μ-mean. Table 2 summa-
rizes how we evaluate the loss factor.

The ’α’ factor in Table 2 is a user defined value that de-
termines the relative importance of performance delay vs.
energy savings. Once the loss factors are evaluated for each
expert, the controller updates the weights of all the experts
using the equation 5 (step 2 of Table 1). The value of β
can be set between 0 and 1. The criterion for selecting the
appropriate value is explained in [21]. For our experiments

Figure 4: DVFS System Level Implementation

we used β = 0.75.

wt+1
i = wt

i · (1 − (1 − β) · lti) (5)

At any point in time, the current weight vector accurately
characterizes the task it belongs to, since it encapsulates
all the updates based on previous μ values. This property
of the weight vector obviates the overhead of storing pre-
vious PMU samples for online estimation of task charac-
teristics, as done in some previous work [18]. To perform
expert selection, the controller maintains a probability vec-
tor rt =< rt

1, r
t
2 . . . rt

N > where 0 ≤ rt
i ≤ 1 are probability

factors associated with each expert for the scheduler tick
number ’t’. The rt is obtained by normalizing the weight
vector as shown below:

rt =
wt

∑N
i=1 wt

i

(6)

At any point in time, the best performing expert has the
highest probability factor amongst all the experts and hence
the controller simply selects the expert with the highest
probability factor as the operational expert for the next
scheduler quantum (step 3 in Table 1). Once the opera-
tional expert has been chosen, the corresponding v-f setting
is applied to the CPU (step 4 in Table 1). Lastly the con-
troller restarts the PMU so that μ for the upcoming sched-
uler quantum can be evaluated at its conclusion (step 5 in
Table 1).

5. EXPERIMENTAL RESULTS
We implemented our algorithm as a Linux 2.6.9 loadable

kernel module (LKM) on Intel PXA27x platform. As shown
in Figure 4, the LKM is closely knit to the Linux process
manager. The Linux task data structure task struct is mod-
ified to include the weight vector to support accurate per
task characterization in a multi-tasking environment. The
process manager notifies the LKM of task creation (which is
used to initialize the weight vector) and scheduler tick occur-
rence (at which point it runs the algorithm shown in Figure
1) and context switch. The LKM also exposes a /proc in-
terface to the user, which is used to specify the e/p tradeoff
(α).

CPU energy savings are calculated by current measure-
ments using a 1.25M samples/sec DAQ. In our experiments
we use a working set comprising of experts listed in Table
3(a). The frequency of each expert increases in steps of
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Table 3: DVFS Working Sets

Freq Voltage
(MHz) (V)

208 1.2
312 1.3
416 1.4
520 1.5

(a)

Freq Voltage [18] Voltage [16]
(MHz) (V) (V)

333 0.91 1.0
400 0.99 1.1
466 1.05 1.1
533 1.12 1.1
600 1.19 1.3
666 1.26 1.3
733 1.49 1.5

(b)

104MHz and corresponds to the highest frequency available
at the associated voltage. Including experts with interme-
diate frequencies does not offer any advantage in terms of
energy efficiency, since we cannot regulate the voltage at a
finer granularity. Table 3(b) shows the experts available on
another platform similar to ours in 2 variants: one with a
finer granularity of voltage levels [18] and other with coarser
granularity [16]. Fine granularity of voltage levels provides
a great deal of advantage to the DVFS technique. For in-
stance, in [16], energy savings for the well know UNIX utility
gzip is reported to be 40% at 333MHz and 35% at 466MHz
when compared against the baseline energy consumption at
733MHz. However in [18], for the same benchmark, the en-
ergy savings is in excess of 70% at 333MHz and around 65%
at 466MHz. This observation highlights the advantages of
a finer granularity voltage levels in the platform. In our
platform, the voltage levels are coarse, and as we will see in
the results that even with static scaling we cannot achieve
higher energy savings than 54%.

We experimented with a number of applications with and
without the DVFS LKM, in both single and multitasking
environments. The energy savings and performance delay
values are compared to a system running at 520MHz/1.5V.
The chosen applications include common UNIX utility gzip
for decompression (dgzip) and 3 representative benchmarks
taken from an open source benchmark suite mibench [22]: bf
(blowfish) - a symmetric block cipher with a variable length
key from 32 to 448 bits; djpeg - decoding a jpeg image file
and qsort - sorting a large array of strings in ascending or-
der. The results achieved under both single and multi task
environments for these benchmarks are illustrated in Table
4. We discuss them below separately.

Single Task Environment: Table 4(a) displays the re-
sults we achieved for each individual benchmark in a single
task environment. The %energy indicates the amount of
energy saved and %delay shows the amount of performance
delay caused relative to the case where we do not have the
DVFS LKM. As explained before, the α factor represents
the user specified e/p tradeoff preference. In our experi-
ments we tested with values of α ranging from 0.3 (low) to
0.7 (high) and used value of α of 0.5 for the medium value.
From the results we can observe that as we increase the value
of α, we get higher energy savings and for lower values of
α, we get low performance delays. For instance, with qsort,
the delay is just 6% for a low value of α, while the energy
savings are 41% for a high value. From our offline analysis
of these benchmarks, we estimate maximum possible energy
savings on our platform with the given working set for qsort,
djpeg, dgzip and bf to be 48%, 54%, 54% and 51% with per-
formance delay of 56%, 34%, 33% and 40% respectively (at
1.2V/208MHz). Hence, the energy savings for all the bench-

Figure 5: Frequency of selection of experts for qsort

marks is on an average within 8% of the maximum possible
at much lesser overhead for high α.

Figure 5 shows the frequency of selection of different ex-
perts for qsort according to the selected value of α. We can
observe that for higher value of α, the 208MHz expert is
selected for around 65% of the time, while for the rest of
the time, the 416MHz expert is chosen. This shows that
the controller is able to identify both the memory bound
phases (which are in majority for qsort) as well as CPU
bound phases and accordingly select the best suited expert.
Hence, we can see that α factor offers us a simple yet pow-
erful control knob to obtain the desired e/p tradeoff.

Multi Task Environment: We experimented with the
benchmarks in a multi-tasking environment as well to verify,
if our per task characterization worked accurately. We per-
formed these test by spawning 2 threads running different
benchmarks simultaneously. Table 4(b) presents the results
we achieved for multitasking for different values of α. From
the results we can observe that as we increase the value of α,
we get higher energy savings and for lower values of α, we get
low performance delays across all the benchmark combina-
tions. For djpeg+dgzip, we observe, that the results are an
average of the individual results in Table 4(a). This is to be
expected since we store the weight vectors on per task basis
to preserve task characteristics across context switches. The
combined two task result is an average of each individual re-
sult since the duration of execution of both the individual
tasks is equal. For qsort+djpeg, we observe that the results
for all the values of α correspond very closely to the results
of qsort in Table 4(a). This is because of the fact that the
total time of execution of qsort benchmark is roughly 4 times
the duration of djpeg benchmark. Hence, the total energy
savings and delay values converge to that of individual qsort
benchmark results. However, we observe in our experiments
that the threads executing the 2 benchmarks have the same
priority and that the djpeg benchmark runs exactly twice
longer with qsort than alone. This implies that accurate
preservation of characteristics enables djpeg to select the
same experts as it does when running alone, hence keeping
its effective run-time the same, irrespective of the context
switches. We observed similar behavior for qsort+dgzip as
well.

Overhead: The LKM adds overhead to the system, since
it processes the 3 events delivered to it by the linux process
manager as discussed in Figure 4. For measuring the over-
head caused by the LKM, we use lmbench [23]. Specifically,
we use the lat proc and lat ctx tests to measure the over-
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Table 4: Energy Savings/Performance Delay Results

Bench. Low α Med α High α
%delay %energy %delay %energy %delay %energy

qsort 6 17.4 16.7 32 25 41
djpeg 7 21 15.2 37.2 26.5 45.2
dgzip 15 30 21 42 27.7 49

bf 6 11 16 27.6 25 40

(a) Single Tasks

Bench. Low α Med α High α
%delay %energy %delay %energy %delay %energy

qsort+djpeg 6 17.4 15.4 33 24.6 41
dgzip+djpeg 12.8 24 19 39.5 27 48.7
qsort+dgzip 7 19.7 17.7 34.6 25.7 42.3
dgzip+bf 11 18 20 33 26 45

(b) Multi-Tasking

head added to process creation and context switch times.
The lat ctx test is performed for context switches between
20 processes (the maximum it supports). We observe that
the overhead is negligible in both the cases. For lat proc it
is almost 0%, while for lat ctx it is around 3%. The over-
head is negligible because the event processing functions in
the LKM are extremely fast and lightweight. During task
creation we just initialize the weights, which is a quick op-
eration. The controller itself is implemented in fixed point
arithmetic and is extremely lightweight. As discussed in
section 4, the use of weights obviates the need of storing
previous PMU samples thereby avoiding a potential over-
head.

Comparison to prior work: Our work, in contrast to
the previous approaches, represents the first full implemen-
tation of DVFS for a multitasking environment with negligi-
ble overhead and a simple mechanism for trading off energy
with performance. The work done in [16] is a system level
DVFS implementation that supports multi-tasking and is
lightweight. However, their policy does not provide tunable
e/p trade-off and is fixed to a performance delay of 10%.
In [17] and [18], the techniques provide finely tuned con-
trol over energy savings and performance delay. They also
achieve high energy savings due to the fine-grained v-f set-
tings of their platform as discussed earlier in this section.
Our performance delay is similar to the one they present in
[17], since that platform, like ours, does not support exter-
nal memory accesses events (MEM). In platform used in [18]
the delay is lower since it supports MEM events. Clearly,
MEM is a more accurate indicator of memory-intensiveness.
However, neither [17] nor [18] have experiments in a multi-
tasking environment. Their regression based approach in-
volves higher overhead, since it has to maintain and oper-
ate on a queue of 25 most recent PMU samples. In their
tests with lmbench, they increase the context switch time
by a factor of 2 from 100μs to 200μs, while our overhead
is negligible. Although that is small compared to the cur-
rent scheduler quantum in Linux (10ms), some embedded
operating systems, e.g. Windows CE 3.0 [24], have already
reduced the scheduler quantum to 1ms. In such systems,
such an increase in context switch times represents 10% of
a constant overhead, a significant fraction.

6. CONCLUSION
In this paper we presented the design, the implementation,

and the experimental evaluation of an extremely lightweight
DVFS technique for a multi-tasking environment. The tech-
nique performs DVFS on the basis of accurate task charac-
terization using runtime statistics provided by the platform
and our online learning algorithm. The online learning al-
gorithm guarantees fast convergence to the best setting for
the current workload based on each task’s characteristics.
It achieves near maximum savings in both single task and

multi-task environments at an overhead which is a factor of
2 less than the state of the art techniques.
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