TEMPERATURE MODELING AND MANAGEMENT IN MULTIPROCESSOR SYSTEMS

Ayse K. Coskun* Shervin Sharifi* Tajana Rosing* Keith Whisnant+ Kenny Gross+
* Computer Science and Engineering Department, University of California San Diego (UCSD) + Sun Microsystems, San Diego

MOTIVATION AND BACKGROUND

- Thermal Hot Spots
 - High leakage power
 - Slower devices
 - Degraded reliability
 - Increased interconnect resistivity
- Thermal Cycles
 - Higher permanent failure rate
- Spatial Gradients
 - Timing failures
 - Increased interconnect delay and IR drop

TEMPERATURE-AWARE SCHEDULING

Optimal Scheduling and Allocation

- Task Graph
 - Precedence, deadlines, thermal behavior

Optimal Schedule with
Minimized Hot Spots, Spatial
Gradients and Thermal Cycles

Integer
Linear
Program
(ILP)

Low Overhead OS-Level Scheduling

- Negligible overhead in comparison
to existing OS-level schedulers
- Adapts to changes in workload, power consumption and temperature

Continuous System Telemetry®

- Collects and analyzes time-series data using physical sensors and performance metrics
- Advanced pattern recognition for reliability surveillance

ACCURATE TEMPERATURE SENSING

- Challenges in Accurate Temperature Sensing
 - Limitations in sensor placement
 - Temperatures at locations of interest may not be directly sensed
 - Sensor noise
 - The values obtained from sensors are typically not accurate
 - Dynamic change of hot spot locations
 - Static placement of sensors cannot cover all locations of interest

Thermal Model

- Modeling temperature by thermal RC network
- Thermal RC network as a linear dynamic system
- State space representation
 - States: Temperatures at various points on the chip
 - Inputs: Power consumptions of functional units
 - Observable states: Temperature values at sensor locations

Accurate Temperature Estimation

- Estimating temperature accurately based on:
 - Inaccurate measurements obtained from the sensors
 - Power consumption of functional units
 - Thermal characteristics of the chip

Kalman filter for state estimation: