Utilizing Green Energy Prediction to Adapt to Energy Supply Variability when Scheduling Mixed Batch and Service Jobs in Data Centers

Baris Aksanli, Jagannathan Venkatesh, Liuyi Zhang and Tajana Rosing
UC San Diego

Motivation
• Data centers consume a lot of power
 • Millions of MWh, reflected as billions of dollars in the electricity bills
 • Tons of carbon emissions to the atmosphere
• Idea: Use renewable energy to reduce carbon emissions
• Problem: Renewable energy supply is highly variable which decreases the energy usage efficiency.

Renewable energy prediction
• Instantaneous renewable energy usage may result in power shortages
• Use short term prediction algorithms (30min window) to decide when renewable energy to run additional processing requests in order to achieve higher energy efficiency while meeting performance constraints

System Architecture
• Use green energy to schedule more batch jobs – MapReduce jobs are good as 92% finish within 30min
• Terminate MR task when green energy supply drops
• Guarantee service jobs meet their performance constraints, and limit performance hit to batch job completion times

Results
• Prediction has 15% lower job completion time on average compared to instantaneous case
• Prediction has 2x overall higher GE efficiency vs. instantaneous
 • GE Efficiency: % of the GE that is used for useful work
• Prediction leads to ~2x more jobs completed with green energy vs. instantaneous case
 • GE Job Percentage: ratio of jobs completed with GE over all completed jobs
• On average, 5x fewer batch tasks need to be terminated with prediction.
 • %Incomplete Jobs: ratio of terminated jobs over all jobs completed with GE

Comparison of solar prediction algorithms. Data gathered from solar installation at UCSD

Comparison of wind prediction algorithms. Data gathered from a wind farm in Lake Benton, available by NREL

Combination of a weighted nearest-neighbor (NN) tables and wind power curve models
• 21.2% error vs. state-of-the-art predictor 48.2% error
