

CODE Computer Science Jacobs and Engineering

Distributed Battery Control to Improve Peak Power Shaving Efficiency in Data Centers

Baris Aksanli⁺, Eddie Pettis[‡] and Tajana S. Rosing⁺ *†*UCSD, *‡*Google

Initial Study

Stored energy in batteries can be used to cap peak power in data centers

Distributed UPS with cluster coordination has:

- 1.5x increase in profit per server vs. centralized
- Peak power reduction of $19\% \rightarrow 23\%$ more servers $\rightarrow 6.2\%$ reduction in TCO/server
- No performance overhead

Detailed Model

1440

Time (mins)

Centralized UPS

	UPS	PDU	PSU	Total
480V AC	89.2%	93.2%	75.4%	62.6%
480V AC - high	96.2%	99.5%	90.2%	86.3%
380V DC	96%	99.5%	91.7%	87.6%
48V DC	92.8%	99%	91.5%	84%

✓ Battery State-of-Charge and **State-of-Health Analysis**

Using a detailed battery model Effects of non-uniform battery discharge on battery lifetime Effects of high discharge currents Battery lifetime (SoH) variation Need for battery coordination

1000 (su) 100

Total Delay

1920 2400 2880 3360 3840 4320 1920 2400 2880 3360 3840 4320 960 1440Time (mins)

Distributed UPS w/ cluster level control

Battery Configuration Study

Goal: Improve the overall lifetime of all the batteries by maximizing total battery State-of-Health (SoH)

- Random & iterative battery selection policies have low performance
- Best solution is possible with global communication which leads to large communication overhead
- **Realistic implementation:** Create battery control groups and communicate among the groups
- **10x less** communication overhead
- Within 6% and 3.3% of the best solution in terms of peak power shaving and average battery lifetime

Battery Grouping		Policy	Communication	
Hierarchy Level	Size of a group	Random	Local	
Server	1	Round Robin	Local	
Rack	20-50	Max-SoH-local	Local	
PDU	200	Max-SoH-global	Global	
Cluster	1000	Max-SoH-limited-comm.	3 groups	
Data center	Multiple clusters	Max Soll more limited comm		

Amount of energy shaved for a 10MW datacenter per week in MWhrs &
(percentage of power shaved compared to the peak)

	Policies	Datacenter partitioning				
		1 cont.	5 PDUs	10 PDUs	50 Racks	1000 Servers
		30	14.3	11.2	4.8	2.5
	LOCAI	(19%)	(16%)	(15%)	(12%)	(10%)
	Max-SoH –	30	30	30	30	30
	glob.	(19%)	(19%)	(19%)	(19%)	(19%)
	Max-SoH –	30	23.1	14.3	6.6	2.5
	lim. comm.	19%	(18%)	(16%)	(13%)	(10%)
	Max-SoH – m-	30	18.1	11.2	4.8	2.5
	lim. comm.	(19%)	(17%)	(15%)	(12%)	(10%)

